Description: This GIS dataset contains data on wastewater treatment plants, based on EPA's Facility Registry Service (FRS) and National Pollutant Discharge Elimination System (NPDES), along with Clean Watersheds Needs Survey (CWNS) and other data sources.This dataset was developed to serve as a general-purpose GIS layer depicting wastewater treatment plant locations, together with a few set of core attributes. The primary facility and locational information was compiled from EPA's Facility Registry Service (FRS) and attribute data was compiled from National Pollutant Discharge Elimination System (NPDES) data. Anticipated uses include emergency response, critical infrastructure and policy and planning. This data is based on a subset query of selected Major Publicly Owned Treatment Works (POTW) and Major Federal owned facilities. Metadata can be found here.Terms of UseNo special restrictions or limitations on using the item’s content have been provided.
Description: Abstract: The National Hydrography Dataset (NHD) is a feature-based database that interconnects and uniquely identifies the stream segments or reaches that make up the nation's surface water drainage system. NHD data was originally developed at 1:100,000-scale and exists at that scale for the whole country. This high-resolution NHD, generally developed at 1:24,000/1:12,000 scale, adds detail to the original 1:100,000-scale NHD. (Data for Alaska, Puerto Rico and the Virgin Islands was developed at high-resolution, not 1:100,000 scale.) Local resolution NHD is being developed where partners and data exist. The NHD contains reach codes for networked features, flow direction, names, and centerline representations for areal water bodies. Reaches are also defined on waterbodies and the approximate shorelines of the Great Lakes, the Atlantic and Pacific Oceans and the Gulf of Mexico. The NHD also incorporates the National Spatial Data Infrastructure framework criteria established by the Federal Geographic Data Committee. Use the metadata link, http://nhdgeo.usgs.gov/metadata/nhd_high.htm, for additional information. Purpose: The NHD is a national framework for assigning reach addresses to water-related entities, such as industrial discharges, drinking water supplies, fish habitat areas, wild and scenic rivers. Reach addresses establish the locations of these entities relative to one another within the NHD surface water drainage network, much like addresses on streets. Once linked to the NHD by their reach addresses, the upstream/downstream relationships of these water-related entities--and any associated information about them--can be analyzed using software tools ranging from spreadsheets to geographic information systems (GIS). GIS can also be used to combine NHD-based network analysis with other data layers, such as soils, land use and population, to help understand and display their respective effects upon one another. Furthermore, because the NHD provides a nationally consistent framework for addressing and analysis, water-related information linked to reach addresses by one organization (national, state, local) can be shared with other organizations and easily integrated into many different types of applications to the benefit of all.Terms of UseNo special restrictions or limitations on using the item’s content have been provided.
Description: Abstract: The National Hydrography Dataset (NHD) is a feature-based database that interconnects and uniquely identifies the stream segments or reaches that make up the nation's surface water drainage system. NHD data was originally developed at 1:100,000-scale and exists at that scale for the whole country. This high-resolution NHD, generally developed at 1:24,000/1:12,000 scale, adds detail to the original 1:100,000-scale NHD. (Data for Alaska, Puerto Rico and the Virgin Islands was developed at high-resolution, not 1:100,000 scale.) Local resolution NHD is being developed where partners and data exist. The NHD contains reach codes for networked features, flow direction, names, and centerline representations for areal water bodies. Reaches are also defined on waterbodies and the approximate shorelines of the Great Lakes, the Atlantic and Pacific Oceans and the Gulf of Mexico. The NHD also incorporates the National Spatial Data Infrastructure framework criteria established by the Federal Geographic Data Committee. Use the metadata link, http://nhdgeo.usgs.gov/metadata/nhd_high.htm, for additional information. Purpose: The NHD is a national framework for assigning reach addresses to water-related entities, such as industrial discharges, drinking water supplies, fish habitat areas, wild and scenic rivers. Reach addresses establish the locations of these entities relative to one another within the NHD surface water drainage network, much like addresses on streets. Once linked to the NHD by their reach addresses, the upstream/downstream relationships of these water-related entities--and any associated information about them--can be analyzed using software tools ranging from spreadsheets to geographic information systems (GIS). GIS can also be used to combine NHD-based network analysis with other data layers, such as soils, land use and population, to help understand and display their respective effects upon one another. Furthermore, because the NHD provides a nationally consistent framework for addressing and analysis, water-related information linked to reach addresses by one organization (national, state, local) can be shared with other organizations and easily integrated into many different types of applications to the benefit of all.Terms of UseNo special restrictions or limitations on using the item’s content have been provided.
Description: =2800) or ([hazard]="H")). Dam locations were digitized using any combination of ortho imagery, topographic DRGs, NAVTEQ streets, NHD flowlines, NHD landmarklines, TIGER hydrography, contact with authoritative sources or web research. A line was created by tracing the crest of the dam using referencing imagery and the NHD flowlines. Entities classified as both MaxCapacity and High Hazard are represented once. Text fields in this dataset have been set to all upper case to facilitate consistent database engine search results. All diacritics (e.g., the German umlaut or the Spanish tilde) have been replaced with their closest equivalent English character to facilitate use with database systems that may not support diacritics. No entities for American Samoa, District of Columbia, the Northern Mariana Islands or the Virgin Islands are included in this dataset. The currentness of this dataset is indicated by the [GEODATE] attribute. Based upon this attribute the oldest record dates from 01/18/2007 and the newest record dates from 02/06/2009.
Description: Abstract: The National Hydrography Dataset (NHD) is a feature-based database that interconnects and uniquely identifies the stream segments or reaches that make up the nation's surface water drainage system. NHD data was originally developed at 1:100,000-scale and exists at that scale for the whole country. This high-resolution NHD, generally developed at 1:24,000/1:12,000 scale, adds detail to the original 1:100,000-scale NHD. (Data for Alaska, Puerto Rico and the Virgin Islands was developed at high-resolution, not 1:100,000 scale.) Local resolution NHD is being developed where partners and data exist. The NHD contains reach codes for networked features, flow direction, names, and centerline representations for areal water bodies. Reaches are also defined on waterbodies and the approximate shorelines of the Great Lakes, the Atlantic and Pacific Oceans and the Gulf of Mexico. The NHD also incorporates the National Spatial Data Infrastructure framework criteria established by the Federal Geographic Data Committee. Use the metadata link, http://nhdgeo.usgs.gov/metadata/nhd_high.htm, for additional information. Purpose: The NHD is a national framework for assigning reach addresses to water-related entities, such as industrial discharges, drinking water supplies, fish habitat areas, wild and scenic rivers. Reach addresses establish the locations of these entities relative to one another within the NHD surface water drainage network, much like addresses on streets. Once linked to the NHD by their reach addresses, the upstream/downstream relationships of these water-related entities--and any associated information about them--can be analyzed using software tools ranging from spreadsheets to geographic information systems (GIS). GIS can also be used to combine NHD-based network analysis with other data layers, such as soils, land use and population, to help understand and display their respective effects upon one another. Furthermore, because the NHD provides a nationally consistent framework for addressing and analysis, water-related information linked to reach addresses by one organization (national, state, local) can be shared with other organizations and easily integrated into many different types of applications to the benefit of all.Terms of UseNo special restrictions or limitations on using the item’s content have been provided.
Description: Abstract: The National Hydrography Dataset (NHD) is a feature-based database that interconnects and uniquely identifies the stream segments or reaches that make up the nation's surface water drainage system. NHD data was originally developed at 1:100,000-scale and exists at that scale for the whole country. This high-resolution NHD, generally developed at 1:24,000/1:12,000 scale, adds detail to the original 1:100,000-scale NHD. (Data for Alaska, Puerto Rico and the Virgin Islands was developed at high-resolution, not 1:100,000 scale.) Local resolution NHD is being developed where partners and data exist. The NHD contains reach codes for networked features, flow direction, names, and centerline representations for areal water bodies. Reaches are also defined on waterbodies and the approximate shorelines of the Great Lakes, the Atlantic and Pacific Oceans and the Gulf of Mexico. The NHD also incorporates the National Spatial Data Infrastructure framework criteria established by the Federal Geographic Data Committee. Use the metadata link, http://nhdgeo.usgs.gov/metadata/nhd_high.htm, for additional information. Purpose: The NHD is a national framework for assigning reach addresses to water-related entities, such as industrial discharges, drinking water supplies, fish habitat areas, wild and scenic rivers. Reach addresses establish the locations of these entities relative to one another within the NHD surface water drainage network, much like addresses on streets. Once linked to the NHD by their reach addresses, the upstream/downstream relationships of these water-related entities--and any associated information about them--can be analyzed using software tools ranging from spreadsheets to geographic information systems (GIS). GIS can also be used to combine NHD-based network analysis with other data layers, such as soils, land use and population, to help understand and display their respective effects upon one another. Furthermore, because the NHD provides a nationally consistent framework for addressing and analysis, water-related information linked to reach addresses by one organization (national, state, local) can be shared with other organizations and easily integrated into many different types of applications to the benefit of all.Terms of UseNo special restrictions or limitations on using the item’s content have been provided.
Description: This map layer contains hydrologic unit boundaries and codes for the United States, Puerto Rico, and the U.S. Virgin Islands. It was revised for inclusion in the National Atlas of the United States of America, and updated to match the streams file created by the USGS National Mapping Division (NMD) for the National Atlas of the United States of America. This is a revised version of the November 2002 map layer.
Description: This map layer contains the shallowest principal aquifers of the conterminous United States, Hawaii, Puerto Rico, and the U.S. Virgin Islands, portrayed as polygons. The map layer was developed as part of the effort to produce the maps published at 1:2,500,000 in the printed series "Ground Water Atlas of the United States". The published maps contain base and cultural features not included in these data. This is a replacement for the July 1998 map layer called Principal Aquifers of the 48 Conterminous United States.
Service Item Id: c05d1f8185a3451d8e2694285f940aff
Copyright Text: This map layer was created and modified over a period of at least five years by several staff members of the U.S. Geological Survey Water Resources Discipline, Cartographic and Publications Program in Madison, Wisconsin. Completion of this map layer and associated metadata was funded, in part, under a cooperative joint funding agreement between the U.S. Geological Survey and the U.S. Environmental Protection Agency.
Description: Abstract: The National Hydrography Dataset (NHD) is a feature-based database that interconnects and uniquely identifies the stream segments or reaches that make up the nation's surface water drainage system. NHD data was originally developed at 1:100,000-scale and exists at that scale for the whole country. This high-resolution NHD, generally developed at 1:24,000/1:12,000 scale, adds detail to the original 1:100,000-scale NHD. (Data for Alaska, Puerto Rico and the Virgin Islands was developed at high-resolution, not 1:100,000 scale.) Local resolution NHD is being developed where partners and data exist. The NHD contains reach codes for networked features, flow direction, names, and centerline representations for areal water bodies. Reaches are also defined on waterbodies and the approximate shorelines of the Great Lakes, the Atlantic and Pacific Oceans and the Gulf of Mexico. The NHD also incorporates the National Spatial Data Infrastructure framework criteria established by the Federal Geographic Data Committee. Use the metadata link, http://nhdgeo.usgs.gov/metadata/nhd_high.htm, for additional information. Purpose: The NHD is a national framework for assigning reach addresses to water-related entities, such as industrial discharges, drinking water supplies, fish habitat areas, wild and scenic rivers. Reach addresses establish the locations of these entities relative to one another within the NHD surface water drainage network, much like addresses on streets. Once linked to the NHD by their reach addresses, the upstream/downstream relationships of these water-related entities--and any associated information about them--can be analyzed using software tools ranging from spreadsheets to geographic information systems (GIS). GIS can also be used to combine NHD-based network analysis with other data layers, such as soils, land use and population, to help understand and display their respective effects upon one another. Furthermore, because the NHD provides a nationally consistent framework for addressing and analysis, water-related information linked to reach addresses by one organization (national, state, local) can be shared with other organizations and easily integrated into many different types of applications to the benefit of all.Terms of UseNo special restrictions or limitations on using the item’s content have been provided.
Description: This dataset is the collection of Reclamation reservoirs and non-Reclamation reservoirs that are important to Reclamation activities in the 17 western US states. Features are largely extracted from National Hydrography Dataset - High Resolution.
Description: This dataset represents the boundaries for reservoirs and lakes owned and operated by USACE. This dataset shows maximum conservation pool or is a reasonable representation of these boundaries. Data is from USACE Districts.Terms of UseAccess Constraint: None (Public Domain Information) Use Constraint: None (Public Use)
Description: This map layer contains hydrologic unit boundaries and codes for the United States, Puerto Rico, and the U.S. Virgin Islands. It was revised for inclusion in the National Atlas of the United States of America, and updated to match the streams file created by the USGS National Mapping Division (NMD) for the National Atlas of the United States of America. This is a revised version of the November 2002 map layer.